Mechanical characterization of collagen fibers and scaffolds for tissue engineering

Eileen Gentleman, Andrea N. Lay, Darryl A. Dickerson, Eric A. Nauman, Glen A. Livesay, Kay C. Dee

Department of Biomedical Engineering, Lindy Boggs Center, Tulane University
Biomaterials 24 (2003) 3805-3813

Presented by Jiehong Liao, Anna Batorsky, Jennifer Currey
Friday, March 19th
Biomaterials

“All those materials used in medical devices in which contact with the tissues of the patient is an important and guiding feature of their use and performance.”

- Science and engineering aspects of biomaterials
 - mechanical, physical, chemical, biological properties

- Applications of biomaterials
 - implantable medical devices, tissue engineering and drug delivery systems
 - design, production, clinical performance characteristics
Authors (Tulane University Dept. of Biomedical Engineering)

- **Kay C. Dee**, Associate Professor
 Ph.D Rensselaer Polytechnic Institute 1996
 □ Cell and tissue engineering, biomaterials, cell adhesion, engineering education
 Eileen Gentleman and Andrea N. Lay

- **Glen A. Livesay**, Assistant Professor
 Ph.D University of Pittsburgh 1996
 □ Experimental and theoretical mechanics, soft tissue and joint mechanics, engineering education
 Darryl A. Dickerson

- **Eric A. Nauman**, Assistant Professor
 Ph.D University of California at Berkeley 2000
 □ Tissue engineering of bone and nerve tissue, degenerative diseases, mechanical loading of cells, mechanics of hierarchical materials, dynamics of biological systems
“To promote the progress of science; to advance the national health, prosperity, and welfare; and to secure the national defense.”

- Independent agency of U.S. Government
- National Science Board of 24 part-time members and Director appointed by the President with advice from the Senate
Background: Ligaments

- Connect bone to bone
- Provide stability
- Collagen fibers
- Heals poorly
- Autograft, allograft, TE
Background: Mechanical Properties

- Structural – specimen scale dependent
- Material – characteristic of material
 - tangent modulus: measure of stiffness taken from slope of linear region on stress-strain curve
- Viscoelastic – time dependent
 - stress-relaxation: “instantaneously” strain specimen, measure stress, which decreases with time
 - creep: apply and maintain constant stress (load), measure strain, which increases with time
Introduction

- Collagen gels
 - Cells produce ECM and aligned properly
 - Insufficient mechanical strength as tissue replacement

- Assessed structural, material, viscoelastic properties of single- and multi-fiber collagen scaffolds, addressing fiber diameter and source

- Studied effects of cells on mechanical properties of fiber-embedded gel scaffolds
Methods: General Outline

- Preparation of materials
 - Single collagen fibers
 - Fiber scaffolds
 - Fiber-embedded gel scaffolds

- Mechanical testing
 - Determination of fiber diameter
 - Tensile testing
 - Viscoelastic testing
Methods: Single Collagen Fibers

- Bovine achilles tendon Collagen Type I prepared and extruded through microbore tubing, diameters 0.051, 0.102, 0.127 cm
- Air dried overnight, reducing diameters by 1/10
- Fibers crosslinked by soaking in EDC
- Rat tail tendon collagen fibers used as a comparison material
Methods: Fiber Scaffolds

- Bovine/rat made in a similar way
- 10 fibers (7.6 cm long) aligned in parallel array and ends knotted
- Determined viability as cell culture substrates
- Seeded scaffolds with rat skin fibroblasts and cultured for 1, 2, 4, 8, 16 days
- Determined viability with “Live/Dead” stain at each time

Not from this study just an illustration of “Live/Dead”
Methods: Fiber-Embedded Gel Scaffolds

- Extruded collagen fibers combined with collagen gel
- 50 extruded collagen fibers (2.5 cm long) knotted
- Scaffolds placed into custom-built molds
- Fibroblast/collagen gel mixture poured into molds
- Incubated 30 min. then covered with cell culture medium and cultured
- Cell viability determined by “Live/Dead” assay
Mechanical Testing

- Determination of fiber diameter
 - Diameters of 17 random wet rat tail tendon collagen fibers measured using laser micrometer
 - Predicted fiber diameters confirmed by manual measurements using micrometer and light microscope
Mechanical Testing Cont.

- **Tensile testing**
 - Computer-controlled testing system (Instron Model 1122)
 - Tested at 12.7 cm/min loading rate
 - Some non-crosslinked scaffolds constructed of rat tail fibers loaded at rate of 2.54 cm/min
 - Samples kept hydrated by spraying with PBS during testing
 - Produce stress-strain curve and calculated tangent modulus
Mechanical Testing Cont.

- **Viscoelastic testing**
 - Tensile creep testing at 2.5 MPa
 - Samples kept hydrate by spraying with PBS
 - Measured elongation by LVDT (linear variable differential transformer)
 - Measured two parameters of creep
 - equilibration time
 - equilibrium strain
Results & Discussion

- **Determination of fiber diameter**
 - Rat tail tendon diameter: average value $271 \mu m$
 - Extruded collagen fiber diameter:
 - Tube diameter-510 μm, fiber (wet) diameter $59 \mu m$
 - Tube diameter-1020 μm, fiber (wet) diameter $125 \mu m$
 - Tube diameter-1270 μm, fiber (wet) diameter $158 \mu m$
 - Used the following equation:
 $\text{Wet Fiber } \varnothing (\mu m) = \{0.1298 \times \text{Extrusion tube } \varnothing (\mu m)\} - 6.79 \mu m$
Results & Discussion Cont.

- **Tensile Testing**
 - Modulus and peak stress decreased as the diameter of extruded crosslinked fibers increased
 - Crosslinked rat tail tendon had a much larger modulus and peak stress compared to the extruded fibers

- Larger fibers are more likely to include defects and has a smaller surface to volume ratio

<table>
<thead>
<tr>
<th>Source</th>
<th>Diameter (μm)</th>
<th>n</th>
<th>Modulus (MPa)</th>
<th>Peak stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded</td>
<td>59</td>
<td>8</td>
<td>484.7 ± 76.3</td>
<td>50.0 ± 13.4</td>
</tr>
<tr>
<td>Extruded</td>
<td>125</td>
<td>11</td>
<td>359.6 ± 28.4</td>
<td>36.0 ± 5.4</td>
</tr>
<tr>
<td>Extruded</td>
<td>158</td>
<td>10</td>
<td>269.7 ± 11.9</td>
<td>24.7 ± 2.9</td>
</tr>
<tr>
<td>Rat tail tendon</td>
<td>271</td>
<td>12</td>
<td>1174.9 ± 283.3</td>
<td>114.6 ± 51.0</td>
</tr>
</tbody>
</table>
Results & Discussion Cont.

- **Tensile Testing**
 - Top graph: stress-strain curve for a crosslinked, single, extruded fiber
 - Lower graph: stress-strain curve for a crosslinked, single, rat tail collagen fiber

- Although different shapes, both produce a classic stress-strain response characteristic of soft biological materials

- Rat tail exhibits strain softening
Tangent modulus of scaffolds from 14 non-crosslinked rat tail tendon fibers depended on initial length of scaffold and rate of load application.

Significant observation since tangent moduli is a material property that should not depend on overall specimen size yet this graph shows that it is dependent.

Behavior also observed for many viscoelastic soft tissues.

- **Extension rate of 2.54 cm/min**
 - \[y = 23.177x + 2.6449 \]
 - \[R^2 = 0.6272 \]

- **Extension rate of 12.7 cm/min**
 - \[y = 36.137x - 14.743 \]
 - \[R^2 = 0.8905 \]
Results & Discussion Cont.

Table 2
Mechanical properties of collagen scaffolds as a function of fiber number

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of fibers</th>
<th>n</th>
<th>Modulus (MPa)</th>
<th>Peak stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded</td>
<td>1</td>
<td>11</td>
<td>359.6 ± 28.4</td>
<td>36.0 ± 5.4</td>
</tr>
<tr>
<td>Extruded</td>
<td>10</td>
<td>12</td>
<td>261.2 ± 63.5</td>
<td>19.9 ± 7.2</td>
</tr>
<tr>
<td>Rat tail tendon</td>
<td>1</td>
<td>12</td>
<td>1174.9 ± 283.3</td>
<td>114.6 ± 51.0</td>
</tr>
<tr>
<td>Rat tail tendon</td>
<td>10</td>
<td>13</td>
<td>995.1 ± 144.0</td>
<td>106.1 ± 13.9</td>
</tr>
</tbody>
</table>

- **Tensile Testing:**
 - Scaffolds with 10 fibers of extruded collagen with diameters 125 µm had a modulus and peak stress significantly less than those of 1 fiber
 - No significant variation between scaffolds of 10 fibers and 1 fiber for rat tail tendon collagen
- **Discussion Question:** What do you believe is the significance and meaning of the data in this table?
Results & Discussion Cont.

Table 3
Mechanical properties of collagen scaffolds cultured with and without cells

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Modulus (MPa)</th>
<th>Peak stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without cells</td>
<td>5</td>
<td>49.6 ± 3.3</td>
<td>2.9 ± 0.9</td>
</tr>
<tr>
<td>With cells</td>
<td>6</td>
<td>83.4 ± 10.8*</td>
<td>5.4 ± 0.4*</td>
</tr>
</tbody>
</table>

- **Tensile Testing:**
 - After 25 days of culture, fiber-embedded gels (125 µm Ø) containing cells exhibited significantly higher tangent moduli and peak stress values when compared to gels without cells

- **Discussion Question:** What are some possible reasons for the altered mechanical properties of cell seeded scaffolds?
Results & Discussion Cont.

- (A) stress-strain curve for fiber-embedded gels without cells
- (B) stress-strain curve for fiber-embedded gels with cells
- Note how (B) is more uniform and contains fewer incremental failures indicated by arrows in (A)
Results & Discussion Cont.

- **Creep Test:**
 - Mean equilibrium time for creep-tested 10-fiber extruded collagen scaffolds was $30.02\pm1.33s$
 - Mean equilibrium strain was 0.095 ± 0.024

- Viscoelastic creep here is very rapid compared to actual ligaments where creep continues beyond 20 min.

- Suggests that viscoelastic behavior of soft tissues is controlled by more than just collagen

- Scaffolds in this study were made of Collagen Type I while native ligaments are composed also of other ECM components
Discussion

- Rat tail tendon is biologically derived and well studied as a source of collagenous tissue, which is often used as a control or reference biomaterial.

- Intend to create scaffolds for replacing normal human ligament tissue.

- Lack of literature on mechanical properties of human knee ligaments.
Some studies report the ACL/PCL having a modulus of 345 MPa and peak stress of 36.4 MPa.

125 µm diameter single fibers exhibited similar properties, but scaffolds of these fibers (multi-fiber) showed decreased material properties (modulus 261.2 MPa; peak stress 19.9MPa)

<table>
<thead>
<tr>
<th>Source</th>
<th>Diameter (µm)</th>
<th>n</th>
<th>Modulus (MPa)</th>
<th>Peak stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded</td>
<td>59</td>
<td>8</td>
<td>484.7 ± 76.3</td>
<td>50.0 ± 13.4</td>
</tr>
<tr>
<td>Extruded</td>
<td>125</td>
<td>11</td>
<td>359.6 ± 28.4</td>
<td>36.0 ± 5.4</td>
</tr>
<tr>
<td>Extruded</td>
<td>158</td>
<td>10</td>
<td>269.7 ± 11.9</td>
<td>24.7 ± 2.9</td>
</tr>
<tr>
<td>Rat tail tendon</td>
<td>271</td>
<td>12</td>
<td>1174.9 ± 283.3</td>
<td>114.6 ± 51.0</td>
</tr>
</tbody>
</table>
Conclusion

- Peak stress should not be the main material property considered in ligament design, but should be considered as a factor of safety.

- One should work to match the properties of the engineered tissue to the natural tissue in the low-end of the stress strain curve. This is the area where most physiological loading occurs.
Conclusion Cont.

- To develop novel collagen gel/scaffold constructs, one must have an understanding of the mechanical properties of the components.

- The data presented in this study was a stepping stone in understanding the mechanical properties of single fibers and collagen scaffolds.

- Future work is necessary to understand the contribution of cells and to understand the effect of gauge length on the modulus.
Fun Stuff

- Fossilized Tyrannosaurus Rex Collagen!