BNG 331 – Cell-Tissue Material Interactions

An Introduction to and History of Biomaterials

Monday, April 1, 2013
Outline for today

Welcome to Spring 2013!

• Happy opening day!

• A bit about me

• Course and syllabus discussion

• Introduction: history of biomaterials and biocompatibility
A bit about me…

B.S. in Biomedical Engineering, Johns Hopkins University (May 2007)

Ph.D. in Bioengineering, University of Pennsylvania (August 2012)
Thesis: Engineering Hyaluronic Acid Hydrogel Degradation to Control Cellular Interactions and Adult Stem Cell Fate in 3D

Visiting Assistant Professor, Union College Bioengineering (September 2012 – present)

Max the pit-boxer dog (sometimes in my office)
Course overview

• MWF, 10:30am-11:35am, Bailey 100
• My contact information:
 – sudhir.khetan@gmail.com (email), 518-388-6261 (phone), Butterfield 109 (office)
 – Office hours (subject to change!): TW 2:00pm-4:00pm
 • However, if you want to see me other times, just walk by and see if I’m in or shoot me an e-mail to set up an appointment; I reply very promptly.
• www.orzo.union.edu/~khetans
• Let’s go over the syllabus...
An Introduction to Biomaterials

• What is a “biomaterial”?
 – One (of numerous) definitions: a biomaterial is “any material designed to interact in some fashion with a biological system”

• Some historical examples:

 - Canine metal implants 1829
 - Artificial heart 1881
 - Hip prostheses 1956
 - Silicone contact lens 2002
An Introduction to Biomaterials (cont.)

- Even earlier examples:
 - 3000 B.C.: earliest report of a surgical suture (in ancient Egypt)
 - 900 A.D.: estimated year (from carbon dating) of the first dental implant found in Europe, which was found to have properly integrated bone

- However, biomaterials do not have to be “fabricated devices”:

 Explants (e.g., arteries) from human cadavers
 porcine (i.e., from pig) heart valves
 Recombinant Erythropoietin (EPO)
Biological considerations for biomaterial implant success

- To understand the interactions of tissues/cells with implanted biomaterials or other devices, one must understand the wound healing response:

 ![Diagram of wound healing stages](image)

 - **Injury**
 - **Coagulation**
 - **Inflammation**
 - **Repair and Remodeling**

 Think of the successful avoidance/navigation of the process as a “pre-requisite” to the success of a biomaterial implant!

- In this course, we will examine each of these stages in-depth – how each can be disrupted, and the resulting effects on the ability of an implant to perform its intended function.

When did an appreciation for this mechanism first develop?
Important dates in biomaterials history

- **1829**: H.S. Levert studies canine responses to implanted metals
 - “*in vivo*” – in the living body of a plant or animal
- **1870**: British surgeon Joseph Lester introduces aseptic surgical techniques
 - “asceptic” – free from contamination by harmful bacteria, viruses or other microorganisms
- **1886**: German doctor H. Hansmann is the first surgeon to use metal plates for internal fixation
- **1931**: Boston surgeon Smith Peterson develops a metal cup for partial hip implants
- **1939 – 1945**: WWII spurs the development of many new materials and orthopaedic surgical techniques
 - Up until ~1950, mostly metals were used because very few plastics existed
- **1947**: first paper on polyethylene as a synthetic implant material
- **1949**: paper published about plastics “sweating out” additives, resulting in a strong (negative) biological reaction
 - Cellophane, Lucite and nylon

Was that last example enough of a “hint” that biological responses to materials should be studied mechanistically? **Unfortunately, not**
Post WWII – chaos reigns in the biomaterials world!

- After WWII, materials that had been rationed were now available and surgeons did not collaborate with scientists or engineers.
- **Surgeon hero** – dentists/doctors would invent “on the fly” when patients’ lives or functionality were at stake.
- Also, minimal government/regulatory activity was ongoing at this time:
 - Prior to 1938, Cosmetics and medical devices were overseen by the Post Office Department and Federal Trade Commission.
 - The FDA took over in 1938.
 - Dealt with increasing medical device “quackery” and the proliferation of medical technologies after WWII – case study: the Thalidomide tragedy (2:50)
 - Congress worked at passing a comparative device law in 1962 – the Kefauver-Harris Drug Amendments.
 - Almost 20 years of unmonitored work!
~1950 – present: a Biomaterials Revolution

• At the time of the 1962 Drug Amendments and Consumer Bill of Rights passages, the biomaterials of today did not exist; no companies were making them, nor was there a formal regulatory approval process
 – What is now the FDA medical device group

• The “quantum leap” in recent decades, enabled by increasingly better laboratory technologies (e.g., fluorescence microscopy), is the understanding of biocompatibility on a cellular and molecular level
 – Definitions vary, but biocompatibility can be described as the capacity of a material or device to not induce toxic or injurious effects on biological systems (i.e., to subvert the wound healing response mentioned earlier)
 – Before 1950, this lack of understanding translated to a very low implant success rate due to rejection by the immune system
Major focus areas for this course:

- Proteins
- Protein-surface interactions
- Coagulation
- Inflammation and infection
- The immune system
A look forward to recent technologies

- Biomaterials research in the *modern* era is marked by a high degree of **interdisciplinarity**:
 - Materials science
 - Chemistry and chemical engineering
 - Biology and bioengineering
 - Physics and biophysics
 - Biomechanics and mechanical engin.
 - Nanotechnology

- Example 1 – vascular stents
 - Boston Scientific’s “Epic” vascular stent system
 - Granted marketing approval by FDA in 2012
 - Made from nitinol (nickel titanium alloy)
 - http://www.youtube.com/watch?v=llGxRd4yLE8

How about a not-yet FDA approved, even newer example?
A look forward to recent technologies

- Biomaterials research in the modern era is marked by a high degree of interdisciplinarity:
 - Materials science
 - Chemistry and chemical engineering
 - Biology and bioengineering
 - Physics and biophysics
 - Biomechanics and mechanical engin.
 - Nanotechnology

- Example 2 – gold nanoshells
 - Gold nanoshells for “photothermal” anti-tumor applications
 - Have shown promise in in vitro studies

 http://www.youtube.com/watch?v=VSObY7dlSaY

These two examples are given to illustrate how far we have come!
However, not all new biomaterials technologies are highly invasive!!!
A look forward to recent technologies

- Biomaterials research in the modern era is marked by a high degree of interdisciplinarity:
 - Materials science
 - Chemistry and chemical engineering
 - Biology and bioengineering
 - Physics and biophysics
 - Biomechanics and mechanical engineering
 - Nanotechnology

- **Example 2 – AssureFit®**
 - Developed by Clemson undergrads in 2012
Please e-mail me your LBL groups (groups of 4) by Friday!!!